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1. INTRODUCTION

1.0 OVERVIEW A

The Complex Variable Boundary Element Method or CVBEM is used to develop

a computer model for estimating the location of the freezing front in soil-

water phase change problems. This computer program, CVBFR1, is based on

the following major assumptions:

(i) the problem is two-dimensional,

(ii) the entire soil system is homogeneous and isotropic,

(iii) the problem thermal boundary conditions are constant values

of temperature (or stream function),

(iv) soil-water flow effects are neglected (the problem is strictly
geothermal),

(v) all heat flow from the freezing front is within the control

volume; there is no heat flux associated with the freezing front

from exterior of the control volume,

(vi) the freezing front movement is sufficiently slow such that

heat flux along the moving boundary can be determined by ZZ

assuming steady state heat flow conditions for small durations

of time (i.e., timesteps).

The CVBEM is used to model the thermal regime of the soil system.

The theory and development of the CVBEM is given in Hromadka (1984, 1987).

Because the numerical technique is a boundary integral approach, the
"p.

control volume thermal regime is modeled with respect to the boundary

values and, therefore, the CVBFR1 data entry requirements are signifi-

cantly less than that usually required of domain methods such as finite-

differences or finite-elements.

1



Soil-water phase change along the freezing front is modeled as a

simple balance between computed heat flux and the evolution of soil-

water volumetric latent heat of fusion. To model the displacement of

the freezing front, program CVBFR1 pro, ides two options:

(i) displace the freezing front coordinates with respect to

changes in the y-coordinate only,

(ii) displace the freezing front coordinates with respect to

a vector normal to the freezing front boundary.

1.1 OBJECTIVES OF REPORT
The objectives of this report are threefold:

(1) Provide background information regarding the CVBEM and the

soil-water phase change model used in program CVBFRI.

(2) Provide documentation for the data entry sequence assoc-

iated with program CVBFR1.

(3) Because the CVBEM results in a small FORTRAN computer

programming effort, provide the CVBFR1 computer code as

an appendix to this report.
o.
.,

1.2 REPORT ORGANIZATION

This report is organized into 4 chapters and 3 appendices as follows:

SECTION

Chapter 1 Introduction

Chapter 2 Modeling approach. Presents heat flow model
(CVBEM) and phase change approximation.

Chapter 3 Data input requirements for program CVBFRI.

Appendix A Background development of the CVBEM.

Appendix B Background development of the approximative
boundary technique to evaluate CVBEM approxi-
mation error.

Appendix C Program CVBFR1 source code.

2
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1.3 REPORT PREPARATION

This report was prepared under the direction of Dr. Richard L. Berg

and Mr. Francis Sayles of the U. S. Army Corps of Engineers, Cold Regions

Research and Engineering Laboratory located in Hanover, New Hampshire.
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2. MODELING APPROACH 1W

2.0 INTRODUCTION 6'

The use of the Complex Variable Boundary Element Method to model

soil-water phase change effects is a new numerical approach to this class

of problems. In previous work, Hromadka and Guymon (1982) applied the

complex variable boundary element method (CVBEM) to the problem of predict-

ing freezing fronts in two-dimensional soil systems. Hromadka et al.
P%

(1983) subsequently compare the CVBEM solution to a domain solution method

and prototype data for the Deadhorse Airport runway at Prudhoe Bay, Alaska.

In another work, the model is further extended to include an approximation

of soil-water flow (Hromadka and Guymon, 1984a). In contrast to the CVBEM

approach, an example in the use of real variable boundary element methods

(Brebbia, 1978) in the approximation of such moving boundary phase change

problems and a review of the pertinent literature is given in O'Niell (1983).

Hromadka and Guymon (1984b) develop a relative error estimation scheme

which exactly evaluates the relative error distribution on the problem V,

boundary that results from the CVBEM approximator matching the known boun-

dary conditions. This relative error determination is used to add or delete

boundary nodes to improve accuracy. Thus, the CVBEM permits a direct and

immediate determination of the approximation error involved in solution of

an assumed Laplacian system. The modeling accuracy is evaluated by the

model-user in the determination of an approximative boundary upon which

the CVBEM provides an exact solution. Although inhomogeneity (and aniso-

tropy) can be included in the CVBEM model, the resulting fully-populated

matrix system quickly becomes large. Therefore in this work, the domain

4 4-
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I.
is assumed homogeneous and isotropic except for differences in frozen and .4

thawed conduction parameters for freezing and thawing problems, respectively.

A major benefit in the use of the CVBEM over other numerical methods

(including real variable boundary element methods and domain methods such 4

as finite-differences and finite-elements) is the accurate and easy-to-use

"approximative boundary" error evaluation technique. Other numerical methods

can be evaluated for modeling error (where exact mathematical solutions

do not exist) by increasing nodal point densities and comparing the result-

ing changes in predicted nodal values of the governing equation's state *"*

variable. In contrast, the CVBEM approximative boundary error evaluation

technique is simply the process of locating the (x,y) points where the

CVBEM approximation function meets the specified boundary condition values

(the approximative boundary), and comparing the resulting plot to the true

problem boundary.

A major benefit for using the CVBEM error evaluation technique is

that highly accurate solutions for two-dimensional potential problems can

be obtained. Often, the CVBEM approximation analysis is terminated when ,

the approximative boundary differs from the true problem boundary to

within the construction tolerance of the project, resulting in an exact

CVBEM model of a probable constructed version of the engineered plan draw-

ings. Consequently the CVBEM approach can be used directly in engineering

applications, or used to provide a wide range of highly accurate approxi-

mations for two-dimensional phase change problems (where the freezing

front movement is slow; see section 2.2) for checking modeling results

produced by other numerical methods.

5 w
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2.1 HEAT FLOW MODEL

For a wide range of soil freezing (or thawing) problems, the freezing

front movement is sufficiently slow such that the governing heat flow equation

can be modeled using a timestepped steady state heat flow approximation.

That is for small durations of time, the heat flux along the freezing front
a.

can be computed assuming the temperature distribution within the frozen

(or thawed) regions are potential functions (i.e., the Laplace equation

applies). Figure 2.1 illustrates a typical two-phase problem definition

where the heat flow model solves for heat flux along the freezing front by

solving the Laplace equation (by use of potential functions) in both the

frozen and thawed regions.

To develop mathematical models of the Laplace equation in each region,

a CVBEM approximator is generated which matches specified boundary conditions

of either temperature or flux at nodal point locations on the problem

boundary and freezing front. The CVBEM approximator exactly satisfies the

Laplace equation; consequently there is no modeling error in solving the

governing Laplace equation (heat flow model), there is only error in matching

the boundary conditions continuously. Figure 2.2 shows an example roadway

problem where the freezing front is initially located some known distance

below the surface. Boundary conditions for the example problem and a nodal

point placement scheme are shown in Fig. 2.3.

The heat flow model in CVBFR1 develops a CVBEM potential function which

satisfies the Laplace equation within the boundary of Fig. 2.3. Appendix A.- '

provides a brief review of the CVBEM numerical approach, and Appendix B

6



FIG. 2.1 TYPICAL TWO-PHASE PROBLEM DEFINITION

REEZING FRONT___ UNFROZEN SOIL

FIG. 2.2 TYPICAL ROADWAY EMBANKMENT PROBLEM



provides a review of the approximative boundary error evaluation technique

used to develop more accurate CVBEM approximations. The usual modeling

procedure is to use the approximative boundary technique to analyze the

initial condition CVBEM model. After the analyst is satisfied with the

CVBEM approximator and its associated level of accuracy then the CVBFR1

program is executed to model the freezing front evolution.

2.2 PHASE CHANGE MODEL

For each timestep, a CVBEM approximator is generated by program CVBFR1

based on the problem geometry and boundary conditions. Heat flux is computed

along the freezing front using the CVBEM approximation stream function

values. The heat flux estimates are assumed to directly equate to the

rate of freezing (or thawing) of a volume of soil at the freezing front.

Consequently, a freezing process for the example of Fig. 2.3 results in a

downward migration of the freezing front such that the product of the time-

step and heat flux equals the latent heat evolved by the change in freezing

front coordinates.

Two freezing front displacement models are available in program CVBFRl:

(1) All displacement occurs in the vertical direction. This
.

simplified model is generally appropriate for many road- .

way problems.

(2) Displacement computed based on an outward normal vector.

This model is the most accurate, but requires more compu-

tational effort than the vertical displacement model.

Figure 2.4 shows the nodal point displacement in a

direction which balances the angles to go between the

normal vector and boundary elements. '"

8
"-.'
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ZERO HEAT
FLUX

FIG. 2.3 NODAL POINT PLACEMENT AND BOUNDARY CONDITIONS
FOR FIG. 2.2 PROBLEM

FROZIE1 SOIL

VECTOR
DIRECTION

FIG. 2.4 NORMAL VECTOR COORDINATE DISPLACEMENT MODEL
(note balanced angles for each normal vector)
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2.3 PROGRAM CVBFR1 CHARACTERISTICS

Class of Problems Modeled

Program CVBFR1 may be used to model soil-water freezing (or thawing) in

two-dimensional, homogeneous, isotropic domains. As illustrated by the

example problem of Figs. 2.2 and 2.3, only one region is modeled (i.e.,

either entirely frozen or entirely thawed) and the freezing front forms part

of the control volume's boundary. For example, program CVBFR1 may be used to

study the freezing front advancement into a soil system where the soil sys-

tem is initially close to the freezing point depression temperature, and

negligible heat flow to the freezing front is contributed from the under-

lying soil system. A schematic of the problem domain and boundary conditions

used in CVBFR1 are illustrated in Fig. 2.5. Another characteristic of

CVBFR1 is that the boundary conditions of the problem are held constant

for the entire simulation. Additionally, the initial conditions of the prob-

lpm are assumed to be near steady state with the freezing front specified

some distance below the top of the control volume boundary (control

surface).

The CVBFR1 Modeling Procedure

The modeling procedure used in the CVBFR1 program is shown schematically

in Fig. 2.6 for the case of a soil freezing problem. It is assumed in

Fig. 2.6 that the analyst has developed a good CVBEM approximator for the

initial conditions of the problem by using the approximative boundary

technique (Appendix B) to locate nodal points on the problem boundary.

Typically, the most difficult modeling problem occurs when the freezing front

is closest to the top of the problem boundary such as shown in Fig. 2.3.

10
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DEVELOP A CVBEM APPROXIMATOR BASED

ON BOUNDARY COORDINATES AND BOUN-

DARY CONDITIONS V T=O

T=O°C

i4-

CALCULATE HEAT FLUX VALUES ALONG q=+KT .- .

THE FREEZING FRONT

n

DISPLACE NODAL COORDINATES ALONG

FREEZING FRONT BASED ON HEAT EVOLVED,

AND VOLUMETRIC LATENT HEAT OF FUSION e,,,

FOR SOIL-WATER MIXTURE

FIG. 2.6 CVBFR1 MODELING PROCEDURE
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Consequently, the CVBEM nodal placement should be concluded based on the

problem's smallest anticipated distance to the freezing front. For example,

the roadway problem shown in Fig. 2.3 spans a width of 50 m; the corre-

sponding distance to the freezing front for initial conditions (freezing

problem) is assumed to be 0.255i.

-'

%.1

%
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3. PROGRAM CVBFR1

3.0 INTRODUCTION

CVBFR1 is a CVBEM program with the capability of estimating the moving

position of a slow-moving freezing front in soils. The CVBFRI program uses

either subroutine FRT1 or FRT2 to estimate the displacement of the freezing

front where subroutine FRTI is based upon a vertical shifting and FRT2 uses

the outer normal direction to calculate the change in nodal point coordinates.

3.1 PROBLEM SET-UP

The problem domain is assumed to be a homogeneous isotropic soil mix-

ture enclosed by the problem boundary. Nodal points are located on the prob-

lem boundary and are numbered in sequence in a counterclockwise direction

from 1 to NNOD.

Nodal points are generally placed closer together near angle points of

the problem boundary, or where boundary condition values (or types of

boundary conditions) change. This increase in nodal density reduces the

error in integrating a trial function (straight line interpolation functions

are used in CVBFRI) which becomes inaccurate near singularities of the po-

tential function, temperature.

The product of the latent heat of fusion for soil-water and the uniform

soil porosity value is used as the volumetric latent heat of fusion for the

soil-water (or soil-ice) mixture. The thermal conductivity value is used

to estimate the normal heat flux values along the freezing front.

14



3.2 INPUT DATA

Input data for program CVBFR1 is as follows:

VARIABLE DATA FILE LINE

KODE Line 1.

NNOD, NFRS, NFRE Line 2

COND, XLAT, POR Line 3

DELT, SIMUL, OUT, ID Line 4 r

X(I). Y(I), KTYPE(I), VALUE(I); I=l to NNOD Line 5

X(NNOD), Y(NNOD), KTYPE(NNOD), VALUE(NNOD); Line NNOD + 4

(END OF FILE)

where:

VARIABLE

KODE = 1, For vertical displacement of freezing
front coordinates

2, Use outward normal vector to estimate
nodal point displacements -

NNOD = Total number of nodes on boundary

NFRS = First node number of the freezing A

front contour

NFRE Last node number of the freezing
front contour

COND = Thermal conductivity of a homogeneous
isotropic soil mixture

XLAI = Latent heat of fusion for soil-water

POR = Porosity of soil

DELT = Increment for time advancement model

SIMUL = Total simulation time

15
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OUT = Output period

ID 0, Detailed output (see Example 1)
1, Summary output (see Example)

X(I), Y(I) = (x,y) coordinates of node I in first
quadrant

KTYPE(I) 1, Prescribed temperature value
2, Prescribed stream function value
3, Prescribed flux value 4-

VALUE(I) Prescribed value according to
KTYPE(). For efflux, VALUE(1) =
effl ux/conductivity

Note: The units of XLAT, COND, DELT, SIMUL, and OUT should be
consistent.

3.3 APPLICATION

Example 1: Computing the Freezing Front Location in a Roadway Embankment

A roadway embankment (Fig. 3.1) problem is used to illustrate the

application of program CVBFR1. The input data and program output (in

English units) for the example problem is provided in the following: ,

(note that the first line is a "l" or "2' for using subroutines FRT1 and

FRT2, respectively):

19
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PROGRAM CVBFR1 Data Input

(Example Problem)

KODE = 1 or 2 (see text)
30 1 15
10 830 .4

,", L20 120 0
0 10 2 0
25 L0 1 0
49 10 1 0
49.Q 10 1 0
5'0 10 1 0
.;0.1 9 .95 1 0

9.[ 9.5 1 0
60 5 t 0
iQ .5 L 0

., 9.9 ot) 1 0
70 0 1 0
70.1 0 1. 0
71t 0 1 0
95 0 1 0
120 0 1 0
120 1 1 -1o
95 .1 1 -10
/I I I1 -1o
7o 1 1 1 -10

.0 1 1 -1 0
,,9 1.05 1 -10
*.9- 1.5 1 -10
60 6 1 -10
5I1 10.5 1 - 10
50.1 10.95 1 -10
50 it I -i0,
•49.9 11 1 -10
A49 I t1t -10

25 tl i. -10
0 11 1 -10

'

'

18
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* The computer modeling results using FRTI (KODE 1) are as follows:

TIME INCREMENT = 6.0000)
TOTAL SIMULATION TIME = 120.0000
CONDUCTIVITY = 10.0000
LATENT HEAT = 80.0000 -,

POROSITY = 0.4000

NODE () Y(I) KTYPE(I) VALUE ANGLE(I)
NO. 1=SV:2=SF

3=EFFLUX

I. 0. 00)0 1 (. (),'000 2 0 , 000 90 .00

2 25.00000 10, (1(000 1 (), 00000 180.00
3 49. Oo)0) 1. 00000 1 0 00000 180.00

4 49. 960o()Q tO .00000 1 0,00000 180 .00
5 5o. ()0001 '). 00(100 1 0(01100 2'06.57
0 5). 10000 9. 95o0 1 0. 1)O00( 180. ()0

51. 0000 , 5()00(0 1 0.0t)00 180. (

8 60. 00000 5 .00000 1 0. 00000 180.00 :

9 69. 00000 56000 1 0 .00000 180. *0()0"
to 69.9()(0 (). 05000 1 ().0,0000 180.00
i 7()0())00 , (10000 1 0 (000 153.43
12 70, ()000( ().00000 1 ).0000() 180.00

13 71 ()W)()0 0 000)0 1 0, 0(00 180.00

14 95 - (100000 0. 00000 1 0. 00000 1860 • 00 ,.

15 1.20 .()()000 0000 1 0. u0)OOO 90. 0(.0

16 120. 00000 1 . 00000 1 - tO 00000 90. 00

17 95 .00000 1 . )()00()0 I - 10. 00000 180 ()o

18 71 . Ooo0t) 1, ())0()0 1 -10 0 10o 0 13(),() 0

t9 7(), 1000( 1, )00()0 1 - .OO') 180,'.

20 70, ((000 1 ()6)000 1 - j(). ()00()0 206.57
21 69.90000 1, 3000 -() ()W)0) 180.00

.69. 9000* 10j , 011 ((?()
22 69 - ()(.)o 1.50000 1 -10 . 0. 1800 "

23 6c). 00(000 . .00000 1 - 1 (). ( 10')() 180.00
24 51.(00000 10. 500()0 1 -1().0(100 180.00 ".

25 50.10000 10,950(60 1 -1(. 0000t) 180.00 .

26 50. 00000 t1, ' 00000 1 -10.0(0000 153.43

27 49.90000 11,0000(00 1 -10.00(000 180.0()

28 49. (00(10 1 1. 00000 1 - 10 ) 00000 18(. ()..

29 25. o o(o 1 - ()000 1 -1( , k)()()00 180. 00

30 (, (((0(( 11 - )()(0(0 1 - 10 () 00(1( 90.00
------------------------------------------------------------------- *

S. %
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MUM'

Cauchy Program Results i

TIME = 120.0000

NODE STATE STREAM
NUMBER VARIABLE FUNCTION

1 -0.0645 0.0000
2 o 0000 186.8884
3 0.0000 366,0428
4 * 0000 373.0393

5 0.0000 373.7330
6 0 . 0000 374 6362
7 0.0000 382.6003
8 0.000( 462.5811
9 0.()000() 542,9409

10 O.0000 550.4897
11 O.0000) 551,2713
12 O. 0000 552.0007
13 0. 0000 558. 4281
14 0.0000 739,2386
15 0. 0000 927.1421
16 -10. 000 927,1481
17 -10 .0000 739. 2394
18 - 10. 0000 558,3662
19 -10.0000 550.7808
20 -10,0000 549.4852
21 -10.0000 548,0763
22 - 10. 0000 539.4200
23 -10. 0000 459,0154
24 -10,0000 379.2508
25 -10.0000 372,4201
26 - 10 0000 372.0577
27 -10.0000 371.7505
28 -10.0000 365.9584
2 - 10.0000 186,89()9
30 -t0.0000 0.0024

20 .-

.% .

20
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CVBEM Approximation Function Nodal Values:
dP

NODE STATE STREAM

NUMBER VARTABLE FUNCTION

1 -o.0oF82 -0.0034

2 -0(,6123 186.8887

3 -0.0574 366,1034
4 -e).1052 373. 11)Y

5 0. 0292 373.7366 p. ,

6 -0, 1064 3745667 .,"

7 -0.0448 382,6476
-0. 0065 462.5815 "'V

9 0.0311 542.9185
10 0.0745 550.4381

it -o.0335 551.2729 "p- d

12 .0556 552,0399

13 (), 0402 558.•4709 lo,%
14 -0.0026 739,2393 % %

15 o .0013 927.1403

16 -100,028 927,1437

17 -10.0)16 739.2404

18 -9.9A1 558.3270
19 -9.Y1 49 550.7245
20 -9, R9A,.? 549.4889

21 -9.9198 548,.1329 ,

22 -,3' 539.4475

23 -9.987F 459.0158
24 -i (). 0409 379.2812

25 -10.0944 372,4865

26 - 10.0 A'-1 372.0609
27 -i 00 (,371.6945

28 - 10. W', i0 365.9055
29 -9, 9F-;8) 186-8916'

3 0 -9 9 . 0 0 0 1 1

bV'

21 "
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Nodal Point Relative Error Values:
1 -0. 0063 0. (034
2 0.0123 -0.0004
3 0-0574 - () , () 6 05
4 (, 1052 -0.0 717
5 -,.'292 -0,. 0036
1.5064 0.0695
7 0.0448 ) 10327
8 0.0065 -0,0004
9 -0.(311 0, t225

10 -0.0745 0, 05L-6
I( 0, (335 -0. ( 016
12 -0.0556 -.o0392
13 -0 ("40.2 -0.0428
14 0 40026 -0.0007
15 -0 t)13 t. 018
16 0-0028 0. 0045
17 0.16 -0.0010
18 -0.6382 0.0392
19 -0.0811 5,563
20 -0,.1038 -0.0037
21 -0.0802 -0,0566
22 -(.0368 -0.0275
23 -0. 122 -.0,0005
24 0.0409 -0.0304
.. 5 0,0944 -0.0664
26 0.0653 --(,0031
27 0 -0806 0(,0560
28 0.0510 0,0529
29 -0, 0420 -0.0007
30 -0.0019 0,0035

New Coordinates of the Freezing Front

Node X-Coord. Y-Coord.

1 0.0000 9,6542.
2 24.9999 9.6543
3 48.9923 9.6363
4 49.8163 T,5782
5 49.8736 9.5383
6 49.9673 9.5380
7 50.8326 9,1534 A'
8 59.8322 4.6640
9 68.8452 0.1761

10 69.8043 -() -2259 -,

11 69.9464 -0,2389
12 70,0668 -0.2815
13 70.9948 -0.3342
14 95- 0000 -0. 3469
15 120,0000 -0.3468

22
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* The output (summary) data using FRT2 (KODE = 2) consists of:

TIME INCREMENT = 6,00( 0(
TOTAL SIMULATION TIME = 120.0600
CONDUCTIVITY = 10.0000
LATENT HEAT 8(,0()00
POROSITY = 0,4(000

NODE X(I) Y(I) KTYPE(1) VALUE ANGLE(I)
NO. 1=SV;2=SF

3=EFFLUX
1 (. 000(0 10 , 00() 2 () 00((0(( 90 0 0 (3(

2 25. (0000 1( 00000 1 00( 0 180 00
3 49.0000 (0 .0000 1 0 (l(3100 180.00
4 49.90000 10*00000 1 03 00000 180. (0
5 50.0(000 10. 00000 1 0 .0000 206 .57
6 50.10000 9. 95000 1 0 00000 180. 003
7 51 .00000 9 * 50((06 1 0. 00000 180. 00
8 60. 00000 5 000 1 00000 180 * 0())
9 69 * 00000 0 450000 1 (3 00000 18( * ()()

tO 69.900(30 () 0500() 1 0. 00((00 180.00
1 t 7(. 0(30(3 (3 (630000 1 0.0(()0() 153.43
12 7(. j000() () (0()00 1 0. 00000 180.00
13 71 (()(00 0 . 0( 00 1 0. (()0()( 180 .00
14 95.00(000 0, 0((30 1 (3 00000 180.00
15 120.00000 0 (300( 1 0 00000 90 00
16 120.00000 1 00000 1 -10. 00000 96, 00-
17 95 .00(0(0 1 ( (0((0 1 - 10 . 00000 180 (("

18 71 ()(00 1 (00(0 1 -10.00000 18 " ()(3_
19 70 1()000 1 0(()0((0 1 -1. () 0 18(%0
20 70 .0(3(0(0 1 * 0(0000 t -10( (300()) 2(06.57
21 69. 90000 1 .05000 1 -100((00 180 .00
22 69.06000 1 .50000 1 -10. (00000 1804 00"" ."
23 60.(00000 6. 00000 1 - 1( (00(0() 180.00
24 51 00000 tO 50((( -1(. (0000 10 . 00
25 50. 10000 10. 95000 1 -10.00000 180.00
26 50.00000 11,0(0(00 1 -10. ((0 153.43
27 49.90000 11 * 0000 1 -1(. 0()00 18(0O.00
28 49.0 ( 10000 11,00000 1 -10 0 0 ((0 180 (0-00
29 25 . (0((6( 11. 0000 1 - 1 0 ()(,(3(3( 1800. 00
30 0 0000(0 11. (0000 1 -10.0(0000 90. 00

23
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New Coordinates of the Freezing Front

Time = 120.0000

Node X-Coord. Y-Coord.

1 0.0000 9.6542
2 25.0000 916542
3 49.0000 9.6369
4 49.9000) 9~.5686
5 50.0000 9,5203
6 50. J. 000 9.5124 '_%
7 51,0000 9.1105

8 60.0000 4,.6188
9 69 . 0000 0*1376

10 (69.9000 -0.2377
11 70.0000 -0,2365
12 70.1000 -0.2807 V-.
13 71, 000( -0.3338
14 95.0000 -0,3470
15 120. 00-3468

N
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Example 2: Nodal Density and Timestep Size Sensitivity Analysis

A sensitivity analysis is prepared examining different time incre-

ments and nodal point densities and the resulting effects on CVBFRI

modeling results. Figure 3.1 shows the different nodal densities and

Fig. 3.2 shows the results from the several CVBEM models. From the analysis,

it appears that a small timestep (6-hours) is preferred, but a large

timestep such as 60 hours results in a relative error with respect to

the one-dimensional Stefan solution of only 2 percent. Additionally, a

relatively sparse nodal density of only 30 nodes results in a satis-

factory approximation.

Example 3: Comparison to Two-Dimensional Domain Modeling Results

The CVBFR1 modeling results for the previous example are compared to .

results from a Nodal Domain Integration (NDI) two-dimensional phase change

model in Fig. 3.3. The NDI model is based upon an isothermal soil-water

phase change approximation, and uses an apparent heat capacity approach .-

to model the freezing front evolution in the fixed grid domain model.

25'.
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Section
Number

TietpA-A B-B C-C D-D of Nodes

6 hrs 1.3466 1.4645 1.2594 1.3466 78
(1.3459) (1.4661) (1.2632) (1.3459) V

12 1.3489 1.4683 1.2604 1.3489 78
(1.3482) (1.4698) (1.2641) (1.3482)

24 1.3537 1.4764 1.2625 1.3537 78
(1.3530) (1.4770) (1.2660) (1.3529)

60 1.3697 1.5023 1.2687 1.3698 78
(1.3689) (1.4829) (1.2709). (1 .3689)

Section
NumberTimestep

Numbers A-A B-B C-C D-D (hours)
,of Nodes _ _ _ _ _ _____ _ _ _ _ _ _____

78 1.3466 1.4645 1.2594 1.3466 6
(1.3459) (1 .4661) (l.2634 0.3451

62 1.3466 1.4645 1.2594 1.3466 6
(1.3459) (1.4661) 01.2634 (1.3451

62 1.3698 1.5023 1.2687 1.3698 60
(1.3689) 0l.4821 (1.2701 (1.368 )

46 1.3461 1.4649 1.2591 1.3467 6
(1.3454) 0.4667) 0.263Qc (.3451

46 1.3696 1.5026 1.2685 1.3698 60
(1.3688) 0.4830 0.2708) 0.369c1

30 1.3458 1.4797 1.2365 1.3468 6
(1.3451) (.4770 0.2444) 0 .346C)

30 1.3693 1.5241 1.2392 1.3699 60
(1.3686) (1.4887) 0.2474 0.3691c

1.3466: Results from Vertical Displacement Model
(1.3459): Results from Normal Vector Displacement Model

Fig. 3.2. Comparison of CVBEM Model Results in Predicting

Freezing Front Location

(Stefan Solution at 60 hrs. is 1.344 ft. depth).
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APPENDIX A:

COMPLEX VARIABLE BOUNDARY ELEMENT METHOD

Hromadka and Guymon (1984c) present a detailed development of the CVBEM.

A comprehensive presentation of the method is given in Hromadka, (1984, 1987).

A feature available with the CVBEM is the generation of a relative error meas-

ure which can be used to match the known boundary condition values of the prob--

lem. Consequently, the method can be used to develop a highly accurate approx-

imation function for the Laplace equation and yet provide a descriptive rela-

tive error distribution for analysis purposes. Because the main objective of

this paper is to analyze the numerical error in solving (5), it is noted that

the Laplace equation is solved throughout the problem domain (if homogeneous)

or in connected subregions (if inhomogeneous). Many anisotropic effects can be

accomodated by the usual rescaling procedures or by subdividing the total do- 'I--

main into easier-to-handle subproblems. The CVBEM is then applied to the prob-

lem domain(s) as discussed in the following.

Let Q be a simply connected domain with boundary r where r' is a simple

closed contour(Fig. Al). Discretize r' by m nodal points into m boundary

elements such that a node is placed at every angle point on r (Fig. A2). Each

boundary element is defined by

r (z: z -z(s) where z(s) z + (Zj.l-Zj)S, O<.ssl}, jm (Al)

with the exception that on the last element,

rm {z: z z(s) where z(s) Zm + (z1 -Zm)S' Os l}

Then

r-2

; j-I



JW~p~wdswz%%r - ---

FIG. Al. SIMPLY CONNECTED DOMAIN ( WITH SIMPLE CLOSED
CONTOUR BOUNDARY( r

ZZm
r4~

FIG. A2. r' DISCRETIZED INTO mBOUNDARY ELEMENTS
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Let each ' be discretized by (k+l) evenly spaced nodes (k 1) such that r

is subdivided into k equilength segments (Fig. A3). Then ri s said to be

a (k+l)-node element. Prom Fig. A3, each r has an associated nodal coordinate

system such that z z and ZJk+I z1+1 - Zj+l, 1

On each rj, define a local coordinate system by

(s) - zj,1 + (- k+I - zjds. Oss 51
(A3)

Z + (zi+ 1 - z )S

where dcj Z,k+l Zil)ds.

On each (k l)-node ele ent rip a set of order k polynomial basis functions

are uniquely defined by

N i(s) a,, 0 + ajt,1 S +...+aJ~tk (M)

where 1 - 1,2,...,(k+1) and 0 5s <1, and where

(
Nk z ZinZi I f 1,1 n j(A5)
il jk' ,1 0, n i I

The basis functions are further defined to have the property that for c "r

N -z ,1-.

N ,k , ,k, il (A6)
Szj ,k+l "z ,.1 0 j:t;

Let w(z) be analytic on n Ur. That is, let w(z) be the solution (unknown)

to the steady-state boundary condition problem being considered. At

each nodal point on r, define a specified nodal value by (Fig. A3)

31



Wjk.I Wi3 W., j

0. 0

wj+I wrj

LEGEND

* ELEMENT ENONODE
o ELEMENT INTERIOR NODE

FIG. A3. (k 1 ) - NODE BOUNDARY ELEMENT Pj NODAL DEFINITIONS

BRANCH- CUT

FIG. A4. BRANCH-CUT OF LN (z- ~)FUNCTION, EF r
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7J, Ji)

Fi..,w- - w.. ,

where from Fig. A3, , l+

Using (A6) and (A7), an order k global trial function is defined by

k -zkG k  k

i Zj+

From (AS), the global trial function is continuous on r. An Hk approximation

function k(z) (Hromadka, 1984, 1987) is defined by the Cauchy integral

;(z) - - .. z EC, z4 r (A9)
r :

Because the derivative of Zk(Z) exists for all z cfl, then (z) is analytic

in Q and exactly solves the Laplace equation in Q.

Expanding (Ag) and using (A2) gives

k kG dc m G dc J(AlO)

r r

Integrating on boundary element j gives (Hromadka, 1984, 1987)

R W1 1 z + l~N (. n ~ *4 (All)
J -z 3 ' z-

r.

where R. (z) is an order (k-1) complex polynomial resultinq from the circuit

around point z (see Fig. A4) and yj is equal to (z-z )/(Zj+-z).

Thus, the CVBEM results in the approximation function

1k-1 - k(ZZ, 1 'k(Z) . - (z) + N wi(yj) In - j (A12)
2wl I ' ~ ~z - zi ..:':-

33
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A K.-4 - -

or in a simpler form (Hromadka, 1984, 1987)

(z -R_ IIn (z _z T (A13)

k kwi j

where Ttk - N-k (YJ-) " Njk i (yj). and Rk(z) follows from

(A12).

The approximation function of (A13) exactly satisfies the governing flow

equation in the problem domain Q for the approximated boundary conditions on

the problem boundary, r. Because Wk(z) is analytic on il, then the maximum

relative error of jw(z) - (z)l must occur on r. Consequently, the total

approximation error can be simply evaluated on r with the corresponding errors

in the interior of Q being less in magnitude. Because the boundary conditions

used to evaluate (A13) are known continuously on r, then Wk(Z) can be determined
,. ,-

within arbitrary accuracy by the addition of nodal points on r due to (without

proof)
lim Gk(c) d4

ma x jr 1 -*0 w( ) d C ..
2ni lim Wk(Z) = - : 2ni w(z) (A14). - z C- z::..

ma1xI ,-o 1-

4"

-.,.-
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APPENDIX B:

THE APPROXIMATIVE BOUNDARY .

FOR CVBEM ERROR ANALYSIS

Generally, the prescribed boundary conditions are values of

constant $ or ip on each rj. These values correspond to level curves
J*%

of the analytic function w(zj a + iw. After determining a (z), it

is convenient to determine an approximative boundary r which corresponds

to the level curves of (.z) a + Ip which are specified as the prescribed

boundary conditions. The resulting contour r is a visual

representation of approximation error, and r coincident with r implies

that ^(z) - w(z). Additional collocation points are located at regions

where P deviates substantially from r.

A difficulty in using this method of locating collocation points

is that the contour r cannot be determined for points z outside of nUIr.

To proceed, an analytic continuation of i(z) to the exterior is achieved

by rewriting the integral function (A9) in terms of

1 G(O)dk m "''

- R1 (z) + I (aj + Ij)(z-zj) Ln (z-z) (81)

r

where ai and 81 are real numbers; and Ln (z-zj) is a principle value

logarithm with branch-cuts drawn normal to I from each branch point zj

such as shown in Fig. B1. The resulting approximation is analytic every-

where except on each branch-cut. The R,(z) function in Eq. (B) is a

first order reference polynomial which results due to the integration

circuit of 2w radians along r. If w(z) is not a first order polynomial,

then R (z) can be omitted in (Bl).

35
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Implemntation on a colputer is direct although considerable com-

putation effort is required. One strategy for using this technique is

to subdivide each rj with several internal points (about 4 to 6) and

determine ^(z) at each point. Next, ,r is located by a Newton-Raphson
,'

stepping procedure in locating where w(z) matches the prescribed level

curve. Thus, several evaluations of (z) are needed to locate a single

point. The end product, however, may be considered very useful since

it can be argued that w(z) is the exact solution to the boundary value

problem with r transformed to r, and r is a visual indication of

approximation error. %

The use of the method discussed for locating additional collocation

points on r is demonstrated by application of the CVBEM for solving 2 steady

state heat transfer problem. The problem considered each involve a different.,

geoetry and set of boundary conditions of the Dirlchlet class. The analytic "

solution to the problems are included in Fig. 82. Each solution satisfies

the Laplace equation and is defined as a function of a local coordinate x-y

system with an origin specified as shown in the figures. On the problem

boundaries, r, the potential function or temperature is also a continuous

function of position defined by

o(zc r) - (x2 + y) (B2)

From (B2), it is seen that the boundary conditions are not level curves;

consequently, the determination of an approximative boundary rr

requires further definition. In these applications, the problem is approacheds.:-.

by using the statement

z: *(z). (x' y2, , . I z (B3)

37

.a ,,. t / . L'I - w:w ',,-,,,NO, ."N.'k,= - ., ,. .. ,.,.._........ . ." ".'., ,- . . ..- .'



y

00

60-

*(x~y) * . 3 3y)/2a + 2a2/27

y

b

a

*(X,Y) W x + -'/ a2b2(X2/al + y2/b 2 -1)/(a
2 + b2)

FIG~ B2. APPLICATION PROBLEM GEOMETRICS AND SOLUTIONS FOR
TEMPERATURE, 'O( x,y)
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The strategy of working with level curves (i.e. o * for z e r = 1,2,**.,m) "d

follows analogously.

The two applications illustrate the development of CVBEI approximation

functions which exactly satisfy the governing partial differential equation

(Laplace equation) in fl and approximately satisfy the boundary conditions

which are continuously specified on r. The subsequent figures illustrate the

CVBEM error evaluations along r for evenly spaced nodal placements

for each problem boundary. "
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APPENDIX C: PROGRAM CVBFR1 Fortran Listing

C MAINPROGRA
C
C MAIN CACYPRGAM(FEEIGRATAINMRNTAVNCMN
CUSSSBOTNSCUHCAC rCUHpAC pAUHHMANFRN
CTHSACYPRGA FEENGOTAIN FRN AVACEN
C UASE SOTES PUROXIMAOUCIAON CUH4CUHOAGF
C
C IMASECI DONL THEAPROXMAION(FUNCTONZ

C OMNBKIX10
C IMPLICIT DOBL1 PECtIN'-HO-)

COMMON!BLK I!X(10E(00
COMMQN'DBLK 4/tYALUE100
VIMMTUALK 3'1YPE(10O
COMMON'I4LK 6/SA(100)
VIRTUA/LK 7./1OO, E(0O
COMMON'DLK 6/SA(100)
DIMENSONL 7./ANGL)tE' 10

DIMENSION HlY(100)

C OPEN DATA FILES
c

wJRD'= I

NWT=2
1F'EN( UNIT =NRDNAME= CAUFRT:.DAT'?TYPE ' OLD')
OFPEN(UNIT=NWTPNAME='CAUCHY.ANS',TYPE='NEW')

f.

C READ DATA

C.-.NOTE' NODE NUMBER PLUS NUJMBER OF EFFLUX B:.C,
c (NNODP=NNOD+NNAT) CAN NOT EXCEED * 1001

READ(NRDP*)KODIE
READ ( NRD,* ) NNOD PNFPSPNFP.E
PEAL' NRI. * )COND, XLATPPOR
READ,(NRD?*)DELTtSIM'JLrOUTrIP
'RITE'NWT 601)DELT.SIMLLCOND XLAT POR

601 FORMAT(//,p6XY'TIME INCREMENT =',F8:4p, 6X!'TOTAL SIMULATION'
1' TIME = '.F8.4q/,6Xq'CONDUCTIYITY ='*F9:4!.6XF'LATENT'!
2' HEAT = 'pF9.4p/p6Xv'POROSITY = '!F6 4rf)

C-11 ALUE OF EFFLUX B .C = EFFLUX!CONDUCTIt.'ITY
DO ? I=1?NNOD

CALL ANG(NNOD)
WRITE(NWTP1O)

10 FORMAT'6X, 'NODE',6X, 'X'I)''6X.'Y'I)''4X. 'tTYPE'I)' 3X, '"ALUIE'r
15X,'ANGLE(I)',/,7X,'NO.'p24Xp'1=S.UP2SF'P./.35X.'3EFFLIX')

DO 9 1=19NNOD
W4RITE (NWT ,6)I X (I) ,Y 'I) ,KTYPE 'iI' V.ALUIE 'I' ANGLE'I)

8 FORMAT(3X,15,5X,2-Fl0 5,I5,5XF10:5rF1:2)
Q CONTINUE

WRITE(NWTf602'
602 FORMAT''2'f'-'%)
C
C CHECK NATURAL OR EFFLLUX BOUND'ARY CONDITION

NNAT=0
DO 3 I=1,NNOD
X 'I)=X (I)
Y (I)=Y(I"
IF(KTYPE'I)YNE.3)GO TO 3
NNAT=NNAT+l
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N NO V FP = N i D+ N H AT
NAT (I) =NNODP

3 CONTINUE
IF(NNAT. EQO" NNOD'UNNOD

C PREPARE GLOBAL MATRICES

C J

C...ZERO ARRAYS
ITERsIFIX(SIMUL/'ELT)
IOUT IF IX (OUT/DELT)
KOUT=O
Do 9999 IIII=l.ITER
KOUT=KOUT+l
DO 5 I=19NNOOP

15 S(I)x0.

DO 6 I1,NNOOP
DO 6 IIslNNOI'P

PIO 1000 j=lrNNO'
C...ACCOMODATE DIAGONAL MODE a

I=J-i
IF(I .EQ.0)I=NNOD
K=J+1
IF(K:GT:NNOD'K1
CALL CAUCHi U, I pK Av p C rE
AJ=A
BJ=ANGLE( ).190,*14 1!93
CALL CA'JCH2( JIKABpCDrAjrBJrpl.

C..ACCOMODiATE REMAINING CONTOUR NODAL POINTS
NELE=NNOD-2-
DiO 500 K=1.NELE
M = J +K,
IF(Pb'3T NNori'M=M-NNO'

IF'N ,GT:NNQD)N=N-NNOD
CALL CAUCH1(JrPB~D
CALL CAUCH2' JMNABCDpAJ!BJP)

500 CONTINUE
1000 CONTINUE
C-

C PREPARE PELATIYE ERROR ANALYSIS

CALL CAUiCH3(NNODiF.NWTF''
TIME=L'ELT*FLOAT( 1111'
IF(KOUT :EQ. IOUT)CALL CAUCH4(NN0D.NWTTMEIi)

C ASSIGN BOUNDARY NODAL POINT VALUES
C

DiO ?010 I=lYNNOD
IF(KTYPE(I),E0.2")GO TO 7015
IF(KTYPE'I):ECQ 3"CO TO ?016
REX'I "=YALUE 'I)
REY(I'=S'I)
GOTO 7010

7015 REX(I)=S'I)
REY (I) =VALUE ('I)
GOTO 7010

7016 II=NAT(I)
REX( I )S( I)
REY' I) =S(11)

7010 CONTINUE
C
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-CALCULATE )ELTTI)I Er.rCP-F "ALLIES
C

CALL HOM(REXIREY.NNQPNWTP:OUT. IOUTHlY, ID"

C UPD~ATE THE NEW INTERNAL ANGLES AND POSITIONS
C OF THE FREEZING OR THAWING FRONT
C

CALL FRONT(NNODNFRS.NFRECOND' XLATPOR ,DELT 'H1Y.KOE'E)
C V.

C OUTPUT THE NEW POSITIONS OF THE FREEZING OR THAWING FRONT

C
IF'KOL'T NE; IOUT)GO Tn QQ99

IF(ID *NE; 0)WRITE'NWT,605)TIME
605 FORMAT(/p6X?'TIME = oF2./

UP IT E(N hiT 603)
603 FORMAT('/.-XP'NEW COORDINATES OF THE FREEZING OP THAOING FRONT'

1,.'12X'NOEE'4X'X-COOPD' p5X P'Y-COOP.D:'./N
110 600 I=NFRSPNFRE -

XA=X I )
YA=Y ~I )'di
WF:ITE(NWT .604"I ,XA' VA

604 FORPMAT(11XI3p5XrF9 4p6XvFS. 4)
600 CONTINUE

WRITE (NWT ,602 I
.OUT=0

99QCONTINUE

C LOSE (IJNIT =NR 0)
CLOSE(UMIT=NW4T)
STOP
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C SUBROUTINE CAUCH1

SUBROUTINE CA'JCH1(JvMFNApFFCrDl

C IMPLICIT DOUBLE FRECISION(A-HO-Z)
COMMON/BLK I/X(100N
COMMON/BLK 2/Y(100)
COMMON/DLK 3/KTYFE(IOO)
COMMON/BLK 7/ANGLE' 100)

C
C SUBROUTINE To DETERMINE BOLUNDARY ELEMENT GEOMETRIC YAL'JES

C.. .CALCULATE 9ECTOR LENGTHS
XLN-SQRT( (Y(N)-Y(J.) )**2+(X(N)-X(J) '**2' -&

XLM-SQRT(UY(f)-Y(J))**2+(X(M)-X(J))**2)
XX = XL N./XL M
A=ALQG(XXX)

c A=DLOG(XLN/XLM)
C ... DETERMINE ANGLE ARITHMETIC

ZMX=(X(M)-X(J))/XLM
ZMY=Y ( M'-Y ( J) ).!XLM
ZNX=(X(N)-X'J))/XLN
ZNY=YN)-Y(J)'XLN
CALL CAUCH5(ZNXPZNYPANGLEN)

CALL CAUCH5(ZMXPZMYgANGLEM)
B=ANGLEN-ANGLEM

C.. .ACCOMODATE CENTRAL ANGLE DETERMINATION BEING BACKWARDS
~MEQ (j-l) O,O N:EO.(j+1))GO TO 98

C.. ACCOMODATE ERANCH-CUT EFFECTS
!F(i'.LT;-3.4159)P=E+6.2931853
lF7t.C.GT. 3. I4159)E'=!-6.2183ie53
(30T0 99

Q8 CONTINUE
B=ANGLE( J)
CONTINUE

C. .COMPLEX 9ARIABLE ARITHMETIC

F=(X'N)-X'M)**2+Y(N)-Y(M))**2

C=C/F

RE T U R:N
END
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C SUBROUTINE CAUCH2

SUBROUTINE CAUCH2(JMpNABCDpAJBJP)
C IMPLICIT DOUBLE PRECISION(A-HPO-Z)

COMMON/9IK 1/X(100)
COMMON/DLK 2/Y(100)
COMMON/BIK 3/KTYPE( 100)
COMMON/BLK 4/VALUE' 100)
VIRTUAL P(100?100)
COMMON./PLK 6/S(100)
COMMON/BLK 7/ANGLE(100)
COMMON/BLK B/NAT(100)

C
C SUBROUINE TO ASSEMBLE BOUNDARY ELEMENTS
C INTO GLOBAL MATRIX FP WITH VECTOR OF CONSTANTSY'S
c

C SUPROUINE TO ASSEMBLE BOUNDARY ELEMENTS
C INTO GLOBAL MATRIX 'P, WITH VECTOR OF CONSTANTS?'S'
C

F=AJ*AJ+BJ*BJ
AZ=-AJ/F

!F(M .EQ. J!)GOTO 100
JJ=J+1
IF(N:EG.JJ)C'OTO 100

C ... ELEMENT DOES NOT CONTAIN NODE 'j~l

C3=(X(J'-X'N)'*C-'Y(J)-Y'N)Y-*D+1,
C4= (X( 2 -X(N)) *E'+('Y( J)-Y (N)) *C
CC 1=Cl1 AZ-?Z*C2
CC2I=C 1*BZ+C2*AZ
C C3=C7*AZ-C4*PZ
CC4=C4*AZ'E'Z*C3
Cl =CC 1
C2=CC2
C! =CC 3
C 4=C CA

C,..ASSIGN COEFFICIENTS TO UNKNOWN HARMONIC 1!AFIALE
Ic' TYFE'JY)EnQ)GO TO 5

C... DIAGONAL NODAL UINKNOWN HARMONIC IS THE STATE ('IAS4LE
C... U'SE REAL EQUATION

01=-C3
02RC4
G3=CI

r3O TO 9

C...tIAGQNAL UNKNOWN HARMONIC IS THE STREAM FUNCTION
C ...'JSE IMASINARY EQUATION

S 1=-C4

G4=C2

9 lF'KTYPE'M):EO,2)G30TO 10
IF(KTYPEM):EQ:3)GOTO 15

C,.STATE VARIABLE SPECIFIED FOR NODE Q'
S'J)=S(J)-(G1)*VALUE(M)
P' 2 ,M = P 1 * ) +(Gl)
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C .EFFLU'X SPEC IFI Ell Fp!n NJO IE M'
15 S ( J)=S (J I

MF=NAT (M
P( J ,F) =P (JgMF) +G2
GO TO 50

C...STREAM FUNCTION SPECIFIED' FOR NODE OMO
10 S( J)=S(J)-(G2)*VALUE( H'

P(JpH)=P(JfM)+(G1)
50 IF(KTYPE(N).EQ,2)GOTO 60

!F(KTYF'E(N) *EQ3)GOTO 65
C ... STATE VARIABLE SPECIFIED FOR NODE ON

S J =S 1'-(63' *'ALUE (N)
F' (IN) SP (ItN) +(04)
GO TO 250

C ... EFFLUJX SPECIFIED FOR NODE 'N
65 S( J)=S( J)

F''JoN)=F' J.N)+G3
NF = NAT (N)
PF' INF )=F' (2'NF '+G4
GO TO 250

C ... STREAM FUJNCTION SPECIFIED FOP: NODE ON'
60 5'i)=S( 2)- '4) *VAL1JE( N)

FP(I !N) =P( _ItN) +(63)
GO TO 250

C B4OUNDARY ELEMENT CONTAINS NODE '2.
C
100 1F(KTYPE(i):EQ,2 ;OR, KTY'E(i)EQ3)GQ TO 110
C..STATE VAR!IABLE SPECIFIED FOP. NODE Oi
C*.LISE !MAGINA:Y EQU'ATION

IF(K TYPE(N) *EQ.1)P( I, h)=F ( .N'.AZ
IFIKTYPE(N) ;Eq. 11 S I J= S-( )-TZ*kJAL LE(N)
IF(KTYFE(N),EO,2)P(JN)=P(JN)+d

IF(KTYFE(N':NE:3)IO TO 113
C-,EFFLIJX SP'ECIFIED FOR NODE '49

F* (I*NN=;:I J-N) +EtZ
NF=NAT (N)
P (J *NFI=Pf ( ?NF ) +Z

!13 IF'fTYEM.E92GOTO 115
!F(KTYF'E(M):EQ:3)GOTO 114
S( j)=S(J)+E4Z*VALUE'M)
P (JH)=P(JH)-AZ
(30 TO 200

115 S(I)=S( J)+AZ*VALUE(M)
P (JfH)=P(JM)-BZ
GO TO 200

C,.EFFLUX SP'ECIFIED FOR NODE IM
114 Sf'=S'I) 

.

P(J!M)=F(JH)-?Z
MF=NAT (H)
P (J.HF)=P(IMF'-AZ
GO TO 200

C.. STREAM FUNCTION SPECIFIED FOR NODE OJI
110 IF(KTYPE(N),NE:1)GOTO 120

S' I)S( J)-AZ*VALIJE(N)
P( IN)=P(JN)-BC
GO TO 130

12-0 IF(KTYPE(N).NE:3)GO TO 111
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EF;'X",-) SFECIF IE- P7 - Q.r

P (J ,N) =P (JPN) +AZ

NF NAT( N'
F'! JpNF)=P'JPNF'-?Z
GSO TO 130

ill S(J)=S( J)+BZ*VAL'JEeM'
P( JPN)P( JPN)+AZ

130 IF(KTYPE(M),NE1:r3O TO 140
S(J) 5(J) +AZ*VALIJE(M)

G0 TO 200
1.40 IF(KTYPE(M):NE,3)GO TO 112
C ... EFFLU'X SPECIFIED FOR NODE IM

MF=NAT(M)
F'JMF)P(J~+'Z

112 'i(jl=S( j)-'Z*VAL'JE(M)
F'(JsM)=P'!M)-AZ

200 IF!(TYPEr).E0:3)GO TO 150

G0 TO -5
.EFFLX SFECIFICED FOP. MODE j-

150 JF=NAT(J)
MF=NAT 'M'

SiF )=c(-IF ~I -ALVE P *TI77
F JF. JF '1.
!F(.TYEIMY NE 3 Pf jF.N)1 1
r[F qTYPEj.I) ;EO,3)'P'JFpMF)=-l,

P j.i J) 'J. -).

"150 CONTINUE
PET UiRN
ENDV
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C SUB'ROU'TINE CALICH3
c---------------------------------------------------------------------

S'JBPOUTINE CAlJCH3(NNQ1INU.T.F
C IMPLICIT D'OUB4LE FRECISION(A-H-Z'1

C TIS SUBROUTINE SOLI)Eq A NNOD%~NN0E' MATR:IX SYSTEM,
C GAUSSIAN ELIMINATION METHOD USED.

C
VIRTUAL P(100F100)
COMMON'FLK 6.'S 100)
N1=NNOV- I
[IQ 100 K1?N.1
KI =K+ I
C=F'(K, K)
IF 'ApS 'C) - .00001 '0, 10 *.

10 [IL 20 j=K:i PNor

15 tO 16 L=K. NN.OE'

P (K L- = P ( i L '

CS' JK s K

20 CONTINUJE
30 WFITE(NW.T.1J)

r 0FPMAT I )(-' -:SINGLULAF:ITY IN POW' oI5) .

(-3n TO) 300

DO 80 J=K1*NNOr'
90 F'fK.J) =P(K* '/C

G3'K) 'S (K) /r
!IQ 00 I=Kl.NOD

11)00 J=:. oNNOVE
go P (I .1 F'I. J )-C*F' *P

'4!) S-l=S-(I ) -C*S KN
100 CONTINUE

!FA? S F(NNOD NNOE 111- 0000011'30-30e 120
120 S 'NNOD P S NNOD) )./'(JNNOD NNOP'

DO 200 L=1*Nl
K=NNOD-L
K I= K + 1
DO 200 J=Kl NNOD

200 S(=S)-KJ)
300 CONT INUE

F: E TUP N
ENE,
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C SUBROULTINE CAUCH4

SUBROU'TINE CALICH4(NNOti.NWT.TIME. ID)
C IMPLICIT DIOUBLE F'RECISION(A-H*0-Z)

COMMON/BLK 3/KTYPE'100)
COMMON/BLK 4/VALUE (100)
COMMON/BLK 6/S( 100)
COMMON/BLK 8/NAT:100)

c
C SUB4ROUTINE FOR OUTPUT

!F':Il NE 0) RETURN
WRITE(NWTPIO) TIME

10 FORMAT(//!'!!,/40X'CAUCHY PROGRAM F:ESULTS' /!.6XP'TIME ='.FS.4)

WPITE(NWT* 12)
12 FOR:MAT./ 'OE ~X SAE,14,'TEM ,5.'UBR

C3X. 'VARIAE'LE' 12-X.'FUNCrIONJ' )
DO50I=NNL

IF(KTYPE(I).NE,3)GO TO 20
II=NAT" I)
WF:ITE 'NUT *55)I *S 'I)pS (I1)

20 IF(KTYFE':I' E(G 1)WFITE':NWr,55'Iy IALUE':Iy?S'I)
IF(KTYFE(I.)EC-.2)WF:RITE(NtiT55)IIS(I)V)ALIUEt

55 FORMAT(3X,15,SXF1O, 41OXFlO:4)
50 CONTINUE

R:E TUPN
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C SUBROUTINE CAUCH5
C .---------------------------------------------------------- ------------

SUBROUTINE CAUCH5(X,Y,ANGLE)
C IMPLICIT DOUBLE PFRECISION(A-HO-Z)
C
C w

C THIS SUBROUTINE DETERMINES THE POS'TI.E ANGLE "
C OF COMPLEX POINT X+iY WITH RESPECT TO THE ORIGIN
C

PI=ACOS(-1:)
!F(X:EQ O. :AND, YGT,O: )ANGLE=:S*PI
IF(X.EQ.0, .AND. Y.LT.O.)ANGLE=1.5*PI
IF(X.GT.O: :AND. Y:GE:O.)ANGLE=ATAN(Y.X)
IF(X.LT.O. *AND. Y.GE:O.)ANGLE=PI-ATAN(-Y!Y)
IF(X.LT.O, ,AND, Y.LTO:)ANGLE=PI+ATANY.X)
IF'X.GT:0: AND: Y:LT:O.)ANGLE=2.*P-ATAN(-Y/X×
F: E T U N
END
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C SUBR~OUTINE HOM

SUBROUTINE HOM(PEXREY.NNQED?N"IT9OUT. IOUT.W1Y. ID)
C IMF'LICIT DOU14LE FRECISI1JN(A-HPO-Z)

C
C THIS SUBROUTINE CALCULATES THE LIMITING NODAL POINT VALUES

C OF THE ANALYTIC HI APPROXIMATION FUNCTION

COMMON/I'LK 1!/X(100) '
CMMON/BLK 2./Y(100)

COMMON'I4LK '7.ANC'LE(100)
DIMENSION HIX(1001,HIY(1001
DIMENSION REX(100) ,REY(100)

C d

C MAIN LOOP
C

P=K(OUT
!F(ID ;NE, 0)KOUT=99
DO 20 j=lpNNOD,
HlX( J)=O,

20 HlY(J)=0,
IF(KQUT EQ I'2UT)WRITE(NWT,22)

22 FORMAT//pl0X?'CVBEM APPF:QXIMATION FUNCTION NODAL VALUES*;'?.0!!*
C6X, 'NODE' ?6X, 'STATE' .14X, 'STREAM' * /.SX.'NUMBER' ,3X, 'VARIA'LE',
C12-X.'FUNCTION')

110 1000 J=IPNNOD
C
C.. fAIC!hIIATE BOUNDkI1ARY ELEMENT CONTRE'1IUIONSk

[to 500 k=19NNOD
KK=K+l'
IF'KK OT ,NNOti)KK=1
IF'K.EO. JsOR*.K.EQ. J)GOTO 500
CALL CAUCH1(JPPK PCD
Cl =PEX (KK ) *( -X (K) )-REY (KK) * (Y ( )-Y (K))

C-REX (K)* ( X () -X (KK) )+REY (K) * (Y (J )-Y (KK))
C2-=REX (KK ) *(Y ( J-Y (K))+REY (KK )* (X ( ) -X (K))

HlX(!'=HIX(J)+C1*C-C2I*Dr
HlYfj,=HIY(J'+C1*I+C2*C

500 CONTINUE

C....CALCULATE PRINCIPLE VALUE CONTRIBUTIONS

IF (K, LT:1 )K=NNOD
KKzJ+1 l~

IF (KK , T *NNOD )KK=1
YLN=SQRT ((Y (KK) -Y (J)'**2+ (X (KK) -X (J)' *2)
XLM=SQRT ((Y (K) -Y (J) )**2+ (X (K) -X (J) )**2)
XXX=XL N! XL M
AJ=ALOG (XXX)

C AJ=DLOG(XLN/XLM)
4j=(360:-ANGLE(J))/190.*3.141593

H1X(J)=HIX(J)+REX(i)*AJ-REY(J)*BJ
H1Y(J)=HIY(J)+REX(J)*DJ+REY(J)*AJ

C
C DIVIDE B'Y 2*P1*i
C

TEMP=HIXI J)
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Hi>'( J Hi Y ( ' f 2931EB
H1Y(JY=-TEMP/6.2931S
IF(KOUT :EQ. IOLT)WRITE(NWTf450)JHIX(J) *M1Y'J)

450 FORMAT(3XI5,SXF1O, 4, OXFlO. 4'
1000 CONTINUE
C
C CALCULATE NODAL POINT RELATIY'E ERROR
C

IF(KOUT *NE. IOUT)GO TO 200
WRITE(NWTP550)

550 FORMAT(///Pl0XY'NODAL POINT RELATIVE ERROR 1.JALIES!')
DO 2000 I1lvNNOD
DA=REX( I)-HlX' r)
t'E=REY(I)-H1Y(I)
WRITE(NWTv450) IvEAvD1

2000 CONTINUE
200 IF(KOUT *EQ, 9999)KOUT=KP

RETURN
END
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C SUBROUTINE ANGLE
C-------------------------------------------------------------------------
C

SUBROUTINE ANG(NNOt)

COMMON/DLK I/X(10)
COIIMON/BLK 2/Y( 100)
COMMON/BLK 7'!ANGLE(100)

C
C THIS SUBROUTINE CALCULATES THE ANGLE BETWEEN EACH NODAL POINT

PI=ACOS(-1.)
DO 100 1=1NNOD
J=I-1
,JJ=I+1
!F(.EG 0) J=NNOD

IF' JJ*GT.NNOD)JJ=1
X(J=X (J) - (I)

XJJ=X( JJ)-Xt I)
YJ=f(Ji-Y( I)

YJJ=Y( JJ)-Y( I)
CALL CAUCH5(XiJtYj!,AJJ)
CALL CAUCH5(XJYJPAJ)
ANGLE(I)=AJ-AJJ'*1BO!.FIl
IF( ANGLE( I) .LTzO, 'ANGLE(I' =ANGLE I) +360,

100 CONTINUE
RETURN
EN E,

55.



r ----------------------------------------------------- el

C SUBROUTINE FRONT

SSUBROUTINE FRONT 'NNODNFRS NFPECONDPXLAT ,POR? DELT 
?HlY KODD)

C THIS SUBROUTINE CALCUALTES THE NEW INTERNAL ANGsLES AND' NEW POSITIONS
C OF THE FREEZING OR THAWING FRONT AFTER EACH TIME INCREMENT BY
C SHIFTING THE POSITIONS IERTICALLY OR NORMALLY,
c

COMMON/IBLK 1/X(100)

COMMON/BLK 2/Y(-10)
COMMON/BLK 7./ANGLE' 100)
DIMENSION Q(50) ,XP'50) .YP(50)
DIMENSION HIY(100)

C
DO 50 I=1P50

50 G(I)=0.
C...APPROXIMATE T HE EFFLUJX ALONG THE FRFEZING FRONT

DO 100 I=NFRS,NFF:E-1
J=J+1
XX=X(I+1 -X (I'

DIS=SGRT XX*XX+Yy~yy)
FLUX=.5*COND*(HY1+1)-HlY(I))/Diis
Q( J)=Q( )+FLUX
S( J+1 )=O( J+ ) +FLUX

100 CONTINUE

C UIPDATE THE NEW FR:EEZING FRONT
C

J=O

DO 200 I=NFRS,NFRE
J=J+ 1

C..,DETERMINE THE NORMAL DIRECTION
Ip1=I+1
IF'IP1 :GT. NNOD)1P1=1

IF(Im1 LT. I)IM1=NNOD)
FI=Acos' -1:
XJY'(IMI)-X(I)
YJ=Y( IMi)-Y(IP
CALL CALCH5XjpYJ,AJ)

C... CALCULATE THE NEW FREEZING FR.ONT
DELS=Q( J )*DELT/ (XLAT*POR)
IF(I.EQ.NFRS *OR, I;EO.NFRE)GO TO 250
ANGL=,5*(360-ANGLE(I))*PI!180:+AJ
IF(KODE *EQ. 2)G0 TO 220 -

XP (I)=X (I)
YP( I)=Y( I)-DELS
GO TO 2-00

220 XP( I)=X I) +DELS*COS (ANGL)
YP( I)=Y I )+DELS*SIN'ANGL)
GO TO 200

250 YP(I)sy'I)-t'ELS*2.
XP(I)-X(I)

200 CONTINUE
DO0 300 I-NFRSPNFRE
X( I)NXP( V
Y( I)syp' I)
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300 CONTINUE
C..,CALCULATE THE NEW INTERNAL ANGELS

CALL ANG(NNOD)
RETURN
END

C

5.
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